THE KINETIC ATMOSPHERE
Vapor, Water, and Ice

VAPOR, WATER, AND ICE

Water has sometimes been described (by scholars whokiomitit very
well) as the “ideal” liquid, the standard to which all athquids are compared.
This is not a description favored by water scientistse fidive proposal that water
be considered as an ideal liquid, that ice is an ideal,saild that water vapor is an
ideal gas is sufficient to give convulsive shudders to mostrveaientists. Water
IS not an ideal liquid; it is not a typical liquid; it i®tra normal liquid. Water is
strange. Many scholars who study it would go so fao aay that it is downright
weird.

Enthalpic Characteristics of the Water Molecule

As a tri-atomic molecule, water vapor has a minimursixtiegrees of
freedom: three of translation, three of rotation-adad temperatures normally
encountered in the free atmosphere—a fractional degrabration (that is, some
molecules in a population will be vibrating along some alxesnot all axes are
involved nor all molecules).

The mean total kinetic energyl§ of a population of water molecules may
thus be approximated by the equation:

u= f.ik,T VWI02

N

Here, f. is the mean number of degrees of freedkimis Boltzmann’'s Constant,

andT is the mean temperature of the population in kelvinduasafor the
degrees of freedom and the kinetic energy content of ar&itogf water (any
phase) at various temperatures are found in the Tdtaefollow the text in this
paper.
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It should be noted that these values are essentiallpendent of the phase.
This independence is mandated by the convention that gageds liand solids at
the same temperature have the same kinetic energi@sinorthe sensing surface;
that is:

z

T =1 NGT04
B

x‘c_:

Here, Uiz is the mean total kinetic energy of all kinds (transfl, rotational, and

vibrational) measured normal to the thermometric surfeeeNature of Gas
Temperatures). In the hard sphere model of an ideal gas, this eveogid apply
only to the kinetic energy of translation normal to thesgsgg surface. However,
real molecules sometimes transfer energies of rotatidrenergies of vibration to
sensing surfaces when they “impact” on those surfaceSkgdEquipartition
Conundrum).

Differences in phase and temperature create diffpreportions of these
three modes, but the total kinetic energy remains eaflgriie same for different
phases at the same temperature.

The differences in specific heatS,J between the three phases at the same
temperature are all accounted for by the different amafm®rk being done
under constant pressure and the work done in loosening andngy dadivarious
bonding energies.

VAPOR

Water vapor is the most ubiquitous of the three phalsesater in the
Earth’s atmosphere. No part of the atmosphere is frige Water vapor can and
does exist within the atmosphere at every combinatid@roperature and pressure
found within the atmosphere.

Intermolecular Bonds: This vapor phase is generally characterized by the
absence of long-term intermolecular bonds. Indeed, tsibdan the defining
characteristic of the vapor phase in classical mechartlowever, recent studies
suggest that dimers and polymers may make up as mucteath of a percent of
vapor formations. It is not known whether these dinagid polymers persist
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through intermolecular collisions, or whether they ardinaously being
destroyed and reformed.

The molecules (and clusters of molecules) of wateovamve about freely
from place to place essentially independently of onehenotThe mean distances
between them depend upon the number density, but are orddreof at least ten
times or more of the mean molecular diameter at numbesittes normally
encountered in the free atmosphere. Generally speakuagaa molecule travels
some three hundred molecular diameters between coflisiomormal temperatures
and pressures.

Thermal Agitation: Virtually all vapor molecules have kinetic energiés o
translation and rotation. Some (but not all) possestikianergies of vibration, as
well. These vapor molecules move through space frooe idaplace spinning
and tumbling and (on occasion) vibrating and librating.

The distribution of molecular velocities and speeds atomgsingle axis
follows the standard normal curve (ddelecular Speeds and Velocities) when
presented in terms of their standard deviation.

2

1 1 Vv
dlv. )| =———exp—-—~ MSV04
( p) 6 /21 P 26>

Here,®(Vp) is the probability of a randomly selected molecule haging
component of velocity, along the proximity axis.

This means that the most probable speed relative to sonet objaterest
(another molecule or a condensation nucleus, for instaeejo, with increasing
relative speeds becoming increasingly less probable. Gieestriengths of both
hydrogen bonding and ionic bonding, the formation of at e@se clusters is
virtually certain. Add in the strong hygroscopic propertiesamhe condensation
nuclei, and virtual certainty becomes certainty.

Phase Changes Thus, vapor molecules can and do form small clustelsnitite
free atmosphere. These clusters can have the tdastcs of either liquid water
or ice, depending upon the temperature and other consudexati
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Both simple experience and the mathematics of probatelitys that some
of these agglomerations do go on to generate larger agdridived forms of
condensation. Everything has to start somewhere.

Humidity : Humidity is the general term for the concentration of wasgor in

the atmosphere. Humidity can be measured and calcutegaty iof the many
ways that we have developed over the years: vapor pegsslative humidity,
specific humidity, absolute humidity, mixing ratio, molessuhumber density, dew
point, and so on.

WATER

Liquid water is less common in the free atmosphere ihavater vapor.
The higher reaches of the atmosphere are virtuallyofréeas are significant
portions of the polar deserts. On the other hand, clpudstly droplets of liquid
water) cover more than sixty percent of the Earthiage at any given time. And,
where clouds are absent, water haze, mist, and fogfterefound. Finally, even
clear skies give rise to dew.

Intermolecular Bonds: As a phase, liquid water is characterized by loose a
ephemeral hydrogen bonding between water molecules. diodivmolecules are
simultaneously bonding and breaking bonds in rapid sequetita variety of
neighboring molecules whose populations change more or ledambnsn the
human time scale. The distance between neighboring molempesds upon the
number and nature of the hydrogen bonding at that tdepkace. It will vary
slightly with the water temperature.

The strength of the intermolecular hydrogen bonding ik thet the density
of real water is some 15% greater than would be theicassimple van der Waals
ideal liquid.

Over the range of water temperatures from 0°C to 100°(yahding
energies are approximately twice the kinetic energlémis, when heat is added to
liquid water, about a third of it goes to increasing tmepterature and about two-
thirds goes toward loosening the intermolecular bonds.
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During isothermal vaporization at constant volume, fhe heat energy
goes to breaking the bonding energies.

Thermal Agitation: Virtually all water molecules possess both kineticrgies of
translation and rotation. Rotation may involve actatdtion of the molecule
when the hydrogen bonds break; or it may simply involveingckack and forth
within the restrictions imposed by the very flexible rogln bond (libration).
Again, some (but not all) water molecules will posdasstic energies of
vibration, as well. Liquid water molecules move aboutifimlace to place in the
body of water, both singly and in clusters. As in the v@base, the populations
of molecules possess a wide distribution of kinetic eesrgvith individual
molecules changing their energies billions of times peosd.

Impulses. These various movements coupled with the close mitoxpf the
individual molecules generate a multitude of moleculgrulses. These impulses
travel with the speed of sound through the liquid. Thus, raliyidual molecule in
liquid water is continuously subject to millions of impulségreater or lesser
vigor coming from every possible direction. Some of¢hegpulses will amplify
one another, some will diminish one another. It is nadeo that the relatively
weak hydrogen bonds should break so frequently.

Phase Changes Simple mathematics tells us that some portiomefholecules
will have sufficient kinetic energy of translation naito one another to break the
intermolecular bonds and become vapor moleéulesthe free atmosphere, liquid
droplets of water almost always contain microscopic bubdflesater vapor. They
usually contain microscopic bubbles of dissolved atmasphases, as well—but
that is another story.

In additions these same mathematics tell us thae smglomerations of
water molecules will possess sufficiently low kinetneggies that the forces of
attraction will cause their hydrogen atoms to stadlign in proto-crystal
arrangements. This is the start of the freezing process

Finally, some of the molecules on the surface of thelelrap ice crystal
will receive impulses from below that will give them eient kinetic energy of

! A hydrogen bond is assumed to be “broken” when theibgrdistance exceeds 310 pm.
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translation normal to that surface to break free and bea@mpor molecules. This
IS gross evaporation.

ICE

In an ice crystal, the intermolecular distances gmeequilibrium positions
between attractive and repulsive forces when the ma&sa@uk strongly aligned
along the projecting axes of their constituent hydraagems. This alignment is
what makes ice less dense than liquid water.

Intermolecular Bonding: This bonding of ice molecules is due to the extremely
intense covalent bonding between the oxygen atom and its tivoggn atoms.
This bonding is so strong that it carries over to adjasater molecules as well.
The strength of this bond is what gives water its anousafvery high) freezing
and boiling points when compared to similar hydrogen compounds.

The role of ionization cannot be overlooked. It appeatsthie presence of
a single hydronium cation g@*) can induce intermolecular hydrogen bonding in
at least a hundred surrounding water molecules. The geeséthe icing cation
(H1s07") appears to be necessary before freezing can be initietede icing
process, this cation is usually structurefDH H,O)s. It is this structure that gives
the common ice crystal and the snowflake its hexagerage.

In ice, a touch under two thirds of the total enthalpdexoted to
maintaining the intermolecular bonds.

Thermal Agitation: Most of the thermal energy will be made manifest astkin
energy of vibration and libration. In vibration, the nles move toward and
away from one another rhythmically along the hydrogen,astestching and
compressing the hydrogen bonds. In libration, they rock sidiel¢p bending and
stretching the hydrogen bonds. In addition, many of thenmlecules will have
intramolecular energies of vibration and libration, with toastituent atoms
altering their mutual orientations in a rhythmic fashion.

In ice, just about a third of the total enthalpy isifesst in the kinetic
energies of the molecules.
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Phase Changes The thermal energies of the individual moleculesraot

uniform. Ordinarily, the mathematical distributiontbése thermal energies will
be such that some molecules will possess sufficienti&iaaergies of rotation and
translation to break these bonds and rotate, tumble, and abmut from place to
place within the larger crystalline structure—much &y o in liquid water. This
iIs made manifest by the old experiment of placing a drapatér-based ink on the
surface of an ice cube and watching the ink diffuse rediaibugh the ice.

As the ice temperature increases toward the melting,poore and more
groups of molecules behave essentially as liquid watethe melting point, the
process increases exponentially both in space and time @nxktturns to liquid
water.

Breaking the bonds between ice molecules and convertingeeto liquid
water isothermally requires some 6.01 Joules per mole.

When molecules on the surface of the ice possess saffiagieetic energy of
translation normal to that surface to completely oosre the local forces of
attraction they will leave the solid phase to becoa®molecules. This is gross
vaporization, or—in this case—sublimation.

Breaking the bonds between water molecules and converéngéter into
water vapor isothermally requires some 40.7 Joules per matenaspheric
pressure in a laboratory container. In the free athersyp this process only
requires some 24.0 Joules per mole. The difference hénati—in the absence of
a “moveable lid"—no work is done against pressure in ia@eration process, the
molecules simply diffuse into the surrounding air.

TABLES

The tables that follow have been compiled from a walgety of sources.
These sources are given in the references that follevatiies.
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THE KINETIC ATMOSPHERE
Vapor, Water, and Ice
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